Iron-sulfur protein maturation in human cells: evidence for a function of frataxin.
نویسندگان
چکیده
The maturation of iron-sulfur (Fe/S) proteins in eukaryotes has been intensively studied in yeast. Hardly anything is known so far about the process in higher eukaryotes, even though the high conservation of the yeast maturation components in most Eukarya suggests similar mechanisms. Here, we developed a cell culture model in which the RNA interference (RNAi) technology was used to deplete a potential component of Fe/S protein maturation, frataxin, in human HeLa cells. This protein is lowered in humans with the neuromuscular disorder Friedreich's ataxia (FRDA). Upon frataxin depletion by RNAi, the enzyme activities of the mitochondrial Fe/S proteins, aconitase and succinate dehydrogenase, were decreased, while the activities of non-Fe/S proteins remained constant. Moreover, Fe/S cluster association with the cytosolic iron-regulatory protein 1 was diminished. In contrast, no alterations in cellular iron uptake, iron content and heme formation were found, and no mitochondrial iron deposits were observed upon frataxin depletion. Hence, iron accumulation in FRDA mitochondria appears to be a late consequence of frataxin deficiency. These results demonstrate (i) that frataxin is a component of the human Fe/S cluster assembly machinery and (ii) that it plays a role in the maturation of both mitochondrial and cytosolic Fe/S proteins.
منابع مشابه
Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia
Friedreich ataxia (FA) is a progressive neurodegenerative disease caused by expansion of a trinucleotide repeat within the first intron of the gene that encodes frataxin. In our study, we investigated the regulation of frataxin expression by iron and demonstrated that frataxin mRNA levels decrease significantly in multiple human cell lines treated with the iron chelator, desferal (DFO). In addi...
متن کاملDdh324 3007..3015
The maturation of iron–sulfur (Fe/S) proteins in eukaryotes has been intensively studied in yeast. Hardly anything is known so far about the process in higher eukaryotes, even though the high conservation of the yeast maturation components in most Eukarya suggests similar mechanisms. Here, we developed a cell culture model in which the RNA interference (RNAi) technology was used to deplete a po...
متن کاملMitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones.
The neurodegenerative disorder Friedreich's ataxia (FRDA) is caused by mutations in frataxin, a mitochondrial protein whose function remains controversial. Using co-immunoprecipitation and mass spectrometry we identified multiple interactors of mitochondrial frataxin in mammalian cells. One interactor was mortalin/GRP75, a homolog of the yeast ssq1 chaperone that integrates iron-sulfur clusters...
متن کاملMitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity.
Friedreich ataxia is a severe autosomal-recessive disease characterized by neurodegeneration, cardiomyopathy and diabetes, resulting from reduced synthesis of the mitochondrial protein frataxin. Although frataxin is ubiquitously expressed, frataxin deficiency leads to a selective loss of dorsal root ganglia neurons, cardiomyocytes and pancreatic beta cells. How frataxin normally promotes surviv...
متن کاملAssembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia.
Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by a deficiency of frataxin, a conserved mitochondrial protein of unknown function. Mitochondrial iron accumulation, loss of iron-sulfur cluster-containing enzymes and increased oxidative damage occur in yeast and mouse frataxin-depleted mutants as well as tissues and cell lines from FRDA patients, suggesting that fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 13 23 شماره
صفحات -
تاریخ انتشار 2004